Understanding the Shadowing Effects of the z-axis and 4π Calibration Systems

Source Shadowing Effects of the Deployment System

Status:

- Unknown systematic effect in the z-axis system, and in the analysis of z-axis calibration data!
- Shadowing effect *presumably* small.
- Not yet modeled in simulations.

Question:

- What is the shadowing effect of the 4pi system?
- How do we compare data taken with the 4pi and z-axis systems?
- Can we correct for the shadowing effect in different deployment systems?

Present z-axis System

→ calculate geometrical shadow of z-axis weight to <u>estimate</u> relative size of possible shadowing effects

geometrical shadow of present z-axis weight ~0.03

Note: Obviously, γ and n do NOT see geometrical shadow

Source Attachment of Present Z-axis System

Z-axis System with Extra Shadow

geometrical shadow of present z-axis weight ~0.03

With enlarged z-axis weight of radius r at distance z we can test geometric shadowing:

r	Z	Fractional Shadow $\pi r^2/4\pi z^2$
1.25	12	0.003 (present)
2"	10	0.01
2.5"	10	0.015
2.5"	8	0.025

weight enclosure:

- mounts in same position as z-axis weight
- compatible with LS (teflon or stainless)
- same shape → scales shadowing effect

Enclosure for z-axis Weight

- same geometry as z-axis weight
- made out of stainless steel or teflon
- made out of two halves that fit over existing weight

4π Full-Volume Calibration System

- Position dependent shadowing
- Calculate geometric shadowing effect

Minimum Shadowing

Maximum Shadowing

Shadowing Effects with the 4π System

Minimum Shadowing

geometrical shadow of calibration pole diameter = ~0.1%

Shadowing Effects with the 4π System

Maximum Shadowing

We make the following assumptions:

- 1. Calibration source never closer than 25" to vertical control cable.
- 2. Control cable attachment and source separated by one pole segment (>50").

Shadow corresponds to 1"-wide band in 4π hemisphere of R ~25"

25" > 50"

geometrical shadow estimate of control cables and calibration pole ~1%

Potential Problems and Issues with this Study

Monte Carlo Simulations:

- has to get materials and reflectivity right ...

Summary

With enlarged z-axis weight of radius r at distance z we can test geometric shadowing:

r	Z	Fractional Geometric Shadow	
1.25	12	0.003 (present system)	
2"	10	0.01	
2.5"	10	0.015	
2.5"	8	0.025	

The geometric shadowing effects we expect from the 4pi system are:

downard pole 0.001 (minimum) 0.01 (maximum upward pole

min

max